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Evolution of Mobile Communications
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Spectrum of 5G NR

Frequency Range 1 (FR1) Frequency Range 2 (FR2)

5G NR sub-6GHz 5G NR mmWave
-' _(e.g. 24.25-27.5 GHz, 27.5-29.5 GHz)

6 GHz 24 GHz 100 GHz

mmWave is for high speed wireless communication in
e backhaul links e indoor
e short range e LOS communications

Ka band Q band V band W band
26.5~740 GHz 33~50 GHz 50~70 GHz 75~110 GHz




Challenges of mmWave Spectrum
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Massive MIMO is required to deal with the

challenges on the severe fading and attenuation
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Virtual cell




When there are more and more antennas

/ / \ /

Beam-pattern of antenna array
As the antenna number increases:
v" Narrower beam-width

v Stronger beam strength " c;& /
% 274

v'Higher array gain \
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100-Antenna
Massive MIMO
testbed

@Lund University, 2015
22User

Spectral Efficiency
145.6bps/Hz

3.51GHz, BW=20MHz

SE greatly improved
compared with 4G(3bps/Hz)
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Antenna Array of
Massive MIMO
Systems

Fraunhofer HHI, Germany

© Britta Pedersen/dpa-Zentralbild




Benefits of massive MIMO

Increase Network Capacity

eHigher spatial multiplexing gain
eMore spatial streams sent
simultaneously

*3D beamforming enables dynamic
coverage

Improve Coverage

I Simplify the multiple-access

layer

Improve energy efficiency

Reduce interference

Robust to intentional jamming

1

1


簡報者
簡報註解
Network Capacity is the total data volume that can be served to the maximum number of users.

https://www.qualcomm.com/news/onq/2019/06/how-5g-massive-mimo-transforms-your-mobile-experiences


Challenges of Massive MIMO

High computational power for signal processing

e Multiuser detection
e Precoder optimization

Accurate channel estimation is tough

e Especially with insufficient RF chains
e Pilot contamination issue

High implementation cost

e Hardware impairment issue
e Synchronization in a large scale networks

Require Interference management

e User scheduling
e Beam management
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MIMO Channel

MIMO = Multiple Input Multiple Output

hi{[m] N,
s1[m] I J.lm > ‘ yl[m]:Zhlk[m]Sk[m]+wl[m]
n k=1
/jl)\/




MIMO Channel

MIMO = Multiple Input Multiple Output
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MIMO Channel

MIMO = Multiple Input Multiple Output

L nlm]= Zthlk[m]sk[m] +w[m]

L Vlm]= thk [m]s, [m]+w,[m]

: S f i :
sw,[m] > Y vy [l =3 by [ms,[m]+wy [m]




MIMO Channel

MIMO = Multiple Input Multiple Output
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MIMO Channel

ylm] = Hs[m] + w[m]
v's[m] has zero-mean with covariance matrix
R = E[s[m]s[m]"
v w[m] has zero-mean with covariance matrix
R, = E[wmw[m]!]= Nyl
v’ s|m] satisfies the power constraint :

Elks[m]k*] = Efjsi[m]i*]+ E[js2[m]}*]+ ¢¢¢+ Efisn, [m]*] - Es




Channel Model

K 1
H=VK+1HLOS+VK+1HNLOS

H; 55: line-of-sight (LOS) path
Hy;0s: none line-of-sight (NLOS) path

K : Rician K factor




Channel Model — LOS Path

H,os = apa, (¢po)at' (6y)

a;, a, : array response vector:

1 ¢ T
a,(0) = \/_ﬁ 1 exp(jo”dt sin 0) exp(jo”Zdt sin@) - exp(jo”(Nt — 1)d;sin 9)]
L
1 T
a.(¢p) = \/_F 1 exp(izT”dr sin @) exp(jZT”Zdr sing) - eXp(jZT”(Nr — 1)d,sin qb)\L/
L
0, : angle of departure (AoD) for LOS path )
LOS
¢o : angle of arrival (AoA) for LOS path bo >+~
------ B, :

a, : complex gain of LOS path

ay~CN(0, N;N, - PL) :YY




Channel Model — NLOS Paths

» For NLOS paths, there are several models depending on environments

» For rich scattering environments, there are numerous NLOS paths

» According to the CLM, Hy; o5 can be expressed as

1/2 1/2
Hypos = Rr/ Hiith/

° Hjjq : N,- X N matrix where each entry is i.i.d. with CN (0, PL)
> Ry : Ny X N¢ correlation matrix among transmit antennas

° R,.: N, X N,. correlation matrix among receive antennas

o If antenna spacing are all greaterthan /2, R = R, =1



Channel Model — NLOS Paths

Under mmWave propagation, the number of paths is limited
L

_ H
Hyros = E apa-(pe)a; (6p)
=1
o L : Number of the NLOSpaths

° 85 : AoDfor the £—th NLOS path

° ¢pp : AoA for the £—th NLOS path

° ap : complex gain of
the £—th NLOS path

. - receiver
transmitter |:

NtNr
a,~CN (0, — PL)




Digital Precoder & Combiner




MIMQO Channel

» Consider the MIMO channel

ylm] = Hs[m] + w[m]
v" Assume that channel H is known at tx and rx

» Take singular value decomposition (SVD) on H
H = UxVv¥?
v' U: N, X N, unitary matrix
v' 'V : N; X N; unitary matrix
v X: N, X N; diagonal matrix with descending diagonal entries
o =>0,=>>0,200,..,0

v r=rank(H), usually, H is full-rank and r = min(N¢, N;.)




Fully Digital Precoding Design

> Let sm| = Vx[m], V is the precoding matrix
z[m] = Ufy[m], U¥is the decoding matrix
z[m] = U"y[m]
= U7U0ZVIVX[m] + U¥w[m]

= ¥x[m] + Uf¥w[m]
where X = diag(ay, 09, ..., 0)

x[m]

slm

i
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Fully Digital Precoding Design

Using SVD of H : H = UXV#
zZlm] = Zx[m] + W[m]

v w[m] = U¥w[m]~CN (0, N,I)
v Ix[m]||* = lIs[m]|I* = tr(Ry) < E;

x[m s[m y[m] z|m|

1v H 1o




Fully Digital Precoding Design for 3x5 MIMO

(eX) Nt — BJNT — 5

v s[m] =VX[m] = v, - x;[m] + v, - x[m] + v3 - x3[m]

WhereV = [V1 V; V3]

It is equivalent to precode x;[m] using the beam v;, i = 1,2,3
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Fully Digital Precoding Design for 3x5 MIMO

From the SVD of H: H = UEVY = g,u v + o,u, v + ozusvi
Since v4, vy, vzare mutually orthogonal
Hv, =(oyu v} + o,u,vl + o3usvy) vy = oquy

Hv, =(o,u v + o,u,vy + osuzvi) v, = o,u,

HV3 =(O‘1u1v11_1 + O-zuzvlz_l + O-3u3v15;1) 173 — O-3u3

x4, [m] A ¢ y y[m] z|m]

wml | v | @ D

{44
E




Fully Digital Precoding Design for 3x5 MIMO

. y[m] = Hs[m] + w[m]
= H(v, - x1[m] + v, - x,|m] + v3 - x3[m])+w[m]

= 01Uy * X1|m] + ouy - x, M| + gzus3 - x3|m] + wm]

In y|m], x;[m] is weighted by the vector u;, i = 1,2,3




Fully Digital Precoding Design for 3x5 MIMO

At rx, Decoder is applied : z,[m] ulHy'm' o,x,[m]
_ YIH o o
zlm] = U%ylm] =12 1 ufy:m: o5, [m]
z,[m] |=| w)'y[m] | =| o,x,[m] +U"w[m]

The last two output is removed ?‘E” ”Xm 0

since no data is conveyed 0

b Jy %‘Lﬁ an

sl | v v v e Ut

_m_
zz|m
X3 [m] —Y% % ?x-e 2 i




Fully Digital Precoding Design for 5x3 MIMO

(eX) Nt — S,Nr =3
v slm] = VX[m]= vy - x;m] + v, - xpm] + v3 - x3[m] + v, 0, m| + vs - x5[m]
where V = [v1 Vy, V3 Dy vS]

It is equivalent to precode x;[m] using the beam v;, i = 1,2,3

g
=
&
|§|
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Fully Digital Precoding Design for 5x3 MIMO

From the SVD of H: H = UEVY = g,u v + o,u, v + ozusvi
. ylm] = Hs|m] + w[m]
= 01Uy - X1[m] + oyu; - x5 |m| + ozus - x5[m| + wlm]

The last two symbols, x,[m] and x<[m], cannot be delivered,
so they are removed.

X, |m]
x3|m] V Y UH
hg
[




Fully Digital Precoding Design for 5x3 MIMO

In y[m], x;|m] is weighted by the vector u;, i = 1,2,3
At rx, Decoder is applied :

z[m] = Uy[m] &= [z[(m]| [u'ym]| [ox[m]]
z,[m] |=| w)'y[m] |= o, x,[m] |+ U"w[m]
| zy[m] | u, y[m] | oyx,[m] |




Fully Digital Precoding Design

x|m] s[m y[m] z[m]
Vv H L
x1[m]| )(g - ;g _ z1|m]
xy[m] >g ;g’; zy[m]
: g LW
X, [m] '>§ ' ;g zy|m]




Fully Digital Precoding Design

z;|m] = o;x;[m] + W;|m], fori =1,2,...,r = rank(H)
v To enhance reliability, set x;[m] = x[m], Vi

v To achieve highest rate, send indep. data on each channel
RX — diag(El, Ez, ""ET')

(m] v v [m]

x1 m Zl
T 7 2 2,[m]

elud >® >® 2
h Q}A ' V‘i/'r Z,m]|

xT' [m] >® >@ r




Capacity of MIMO Channel — Perfect CSI

> With full CSI at tx, {E;} can be designed to maximize
achievable rate of the MIMO channel

4 E
ma log| 1+ —L 72
{E,-}XZ g( N, O ]

i=1

v {E;} satisfy the power constraint :
tr(R)=E+E,+-+E <E
v' Use the method of Lagrange multiplier find the solution

» The optimal power allocation is :
* N +
5 = (u=1)
l
v (x)* 2 max(x, 0)
v' The value of u is set to satisfies the power constraint :
E+E ++E <E




Capacity of MIMO Channel — Perfect CSI

The optimal power allocation is :
E = (ll = N—g)+ Water-filling

Solution

High SNR Case




Capacity of MIMO Channel — Perfect CSI

The optimal power allocation is :
E = (ll = E)Jr Water-filling

2
O;

Solution

EZ:O E;=(|)

A

Low SNR Case

No




Capacity of MIMO Channel — Perfect CSI

The optimal power allocation is :
* = (g — No\"
fi= (1)

l

v' Water-filling solution
v At low SNR, it tends to allocate all power to the best channel

v At high SNR, it tends to evenly allocate power
With CSI at tx, capacity of MIMO channel is

C=> log|1+—Lo;
i=1 \ N()
v The value of u is set to satisfies the power constraint :

E; +E} + -+ E; <E,




Capacity of MIMO Channel — Perfect CSI
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Capacity of MIMO Channel — Perfect CSI
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Fully Digital Precoder at MIMO Transmitter

DAC : Digital to Analog Converter

x[m] sgm] : .. .
o — —| DAC |7 s Mina DAC convers digital signal to an
Ch -
RTH analog waveform
Digital | DAe I | Chain I_mJ RF Chai
I ain:

Precl;)der ' T RF= Radio Frequency
I_,7IMI -_‘r RF Chain up-convert baseband
|_|— rE 1 — LNA signa! to a pa;sband signal with

a desired carrier frequency
Given SVD of channel matrix H = UZVZ, LNA : Low Noise Amplifier
the optimal precoding matrix is Fyp = LNA amplifies the signal



Fully Digital Combiner at MIMO Receiver

LNA : Low Noise Amplifier

ylm] z[m]
LNA |— Chein |—1 ADC [ —#—= RF Chain:
RF= Radio Frequency
— ADC — io: Emmey .
LNA Cham Digital RF Chain down-convert passband
.| [Combiner signal to a baseband waveform
LNA I Chaln ADC T W BB
— ADC : Analog to Digital Converter

LNA — Chain U J ADC convers analog signal to a
digital stream

Given SVD of channel matrix H = UXV”,
the optimal combining matrix is Wy, = U”



Challenges of Precoding in Massive MIMO

> In Massive MIMO systems with fully digital precoder / combiner

> Number of RF chains, ADCs/DACs and LNAs is identical to Number of antennas

1. The cost of RF chains and ADCs/DACs are higher especiallyfor mmWave devices
2. It demands more volume to allocate numerous circuits of RF chain and ADC/DAC

o To tackle the challenges, we may consider

> Analog beamforming -'II!HIIEIIEI.III-
l =i S IE
)

- E)
=Sl it
—alliiiine.

_—_ /O
— il .
'I.-ur“‘
fh~ M
“1F”-
[

> Hybrid Precoder/ Combiner

e




Analog Beamforming at Tx and Rx




Analog Beamforming at Tx and Rx

Baseband received signal
y|m] = wHfx[m] + n[m]

v" Analog beamforming vector f = \/i_[ej% elP2 effpwt]

9T
v Analogcomblnmgvectorw—\/—[ejclh el e]ﬁbNT]




Analog Beamforming at Tx and Rx

The vector f and w is designed to maximize SNR
(£oPY), w(oPY) = argmax |w! Hf ‘2
st. |fi|=1/JN;,i=12,..,N,

lw;)| =1/{/N,,i =1,2,...,N,

v If there is no modulus constraint, the optimal solution is
fOPY) = V(:, 1)

w(PY = U(:, 1)
v Matrices U and V are singular matrices of the channel matrix H = UZV#




Analog Beamforming at Tx and Rx

Under mmWave channel model

L
H =PIy ) aa (d)al (6,)
£=0

v a,(0) = \/im |1 exp(jiid;sinf) exp(jZ2d,sinf) -+ exp(F(N; — 1)d;sin 9)]T
2T . 27T . 27T . T
v a.(¢p) = \/LN_,, |1 exp(jiid,sing) exp(jZ2d,sing) - exp(j (N, — 1)d;sin¢)]

v If N; and N, are very large, it is proven that the optimal solution is

<

V
f0P0 = a, (6;) 3’//’*‘/(/
wopt) — a,.(¢p;) — 1o,

where k is selected from k = arg max |a,| j

£







Remarks

» MIMO systems exploit spatial diversity and multiplexing gain effectively

» With perfect CSI, fully digital precoder and combiner are obtained from
the SVD of the channel matrix

» If tx and rx have a single RF, analog precoder/ combiner can exploit
array gain to enhance received SNR
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