Full-Duplex Experiment Using ZedBoard with AD9361 SDR

Kelvin Kuang-Chi Lee Tamkang University

Overview of the Experiment

- Objective
 - Instrument a full-duplex (FDX) communication system with one half-duplex (HDX) transmitter (Tx), one FDX relay transceiver (Relay), and one FDX receiver (Rx)
- Key Elements:
 - Zedboard Zynq-7000 with AD9361
 - Omni-directional and directional antennas
 - Zynq QPSK transmitter/receivrer blocks
 - Zynq QPSK Relay self-interference cancellation (SIC) algorithms
 - SGD-based vs. RLS based SIC
 - Zadoff-Chu (ZC) sequence generation and synchronization

System Setup (1)

- SDR
 - HDX TX (ZedBoard + AD9361 + omni-directional antenna)
 - FDX Relay (ZedBoard + AD9361 + directional antennas)
 - HDX RX (ZedBoard + AD9361 + omni-directional antenna)
- SIC @ Relay SDR
- ZC reference sequence for synchronization

System Setup (2)

Lab-3: IB FDX Communications

- Tx SDR Setup
 - Setup ZedBoard + AD9361 as the HDX QPSK Tx SDR
 - Configure "AD9361 Transmitter" (i.e., IP address, carrier frequency = 5G Hz, antenna selection, baseband sample rate, gain, ...)
 - Convert the "Hello World ###" message to baseband QPSK modulated signal including Baker/ZC sequence; transmit data to "Relay SDR" via the omni-directional antenna

QPSK Transmitter SDR (1)

QPSK Transmitter Using Analog Devices AD9361/AD9364

Note: Before running the QPSK models, first run the companion models for frequency offset calibration.

Open the companion zynqRadioFrequencyCalibrationTxAD9361AD9364SLmodel

Open the companion zynqRadioFrequencyCalibrationRxAD9361AD9364SL model

Open the companion zynqRadioQPSKRxAD9361AD9364SL model

Info

QPSK Transmitter SDR (2)

	Block Parameters: AD936x Trans	smitter	×
	AD936x Transmitter		
	Transmit data using an AD936x.		
	Main Filter Advanced Radio Connection Radio IP address:	192.168.3.2	
	Info		
	Radio Properties		
	Source of center frequency:	Dialog	~
AD936x [4096x1] data Transmitter	Center frequency (Hz):	5e9+15500 <- Post Calibration result	5e+09
	Source of gain:	Dialog	~
AD936x Transmitter	Gain (dB):	-10	
	Channel mapping:	1	
	Baseband sample rate (Hz):	sdrqpsktx.RadioFrontEndSampleRate 5	520841
	Data Data Enable output port for underflow	indicator	
		OK Cancel Help	Apply

Full-Duplex (FDX) Relay SDR Setup

– Configure AD9361 Tx SDR block

- Center Frequency: 5 GHz
- Baseband Sample Rate (i.e., data rate) = 520841 Hz
- Set the Input Data Type: Complex Input
- Enable Transmit Continuously (optional)
- Configure AD9361 Rx SDR block
 - Center Frequency: 5 GHz
 - Baseband Sample Rate (i.e., data rate) = 520841 MHz
 - Set the Output Data Type: Complex Output

QPSK Relay SDR (0)

- FDX QPSK Relay SDR
 - **QPSK Receiver**: demodulates the received signal
 - Unbuffer: frame to sample conversion
 - Buffer: sample to frame conversion
 - remodulate: processes and forwards the received bits
 - QPSK modulator: convert bits to constellation
- Enable Sample Time Color Coding
 - Debug > Information Overlays > Text and Colors

QPSK Relay SDR (1)

QPSK Relay SDR (2)

- AD9361 Receiver
 - Bandpass (RF) to baseband conversion

			Block Parameters: AD936x Recei	ver					\times
			AD936x Receiver						
			Receive data from an AD936x.						
			Main Filter Advanced						
			Radio Connection						
			Radio IP address:	192.168.3.3					
			Info						
	data	[4096x1] D6	-Radio Properties						
	uala		Source of center frequency:	Dialog					~
AD936x Receiver	data valid	D6	Center frequency (Hz):	5e9				5e+09	
	overflow	De	Source of gain:	AGC Slow Attack					\sim
		20	Channel mapping:	1					:
			Baseband sample rate (Hz):	sdrqpskrx.Fs				520841	:
*** Center frequency	change		Data						
to 5e9			Output data type:	double					\sim
			Samples per frame:	4096					
			Enable output port for overflow in	dicator					
			Enable burst mode						
					OK	Cancel	Help	Apply	,

QPSK Relay SDR (4)

- **QPSK Receiver**
 - Perform QPSK demodulation

QPSK Relay SDR (6)

- **QPSK Receiver**
 - **SIC** (Self-Interference Cancellation)

Side note: Digital SIC Algorithms

- Stochastic Gradient Descent (SGD)
- Recursive Least Squares (RLS)

```
      Table 1
      SGD Algorithm for Iteratively Updating \mathbf{a}_n.

      1: Initialization:

      2: \mathbf{a}_n = \mathbf{0};

      3: Iteration loop:
```

```
4: \mathbf{a}_n = \mathbf{a}_{n-1} + \mu(r[n] - \mathbf{a}_{n-1}^* \overline{\mathbf{x}}_n) \overline{\mathbf{x}}_n.
```


1: Initialization:

- 2: $\mathbf{a}_n = \mathbf{0}$, $\mathbf{P}_0 = \varepsilon^{-1} \mathbf{I}_{L_a}$, $0 \le \varepsilon \le 1$;
- 3: Iteration loop:

4:
$$\boldsymbol{\xi}_n = (1 + \lambda^{-1} \overline{\mathbf{x}}_n^* \mathbf{P}_{n-1} \overline{\mathbf{x}}_n)^{-1} \lambda^{-1} \mathbf{P}_{n-1} \overline{\mathbf{x}}_n;$$

5: $\mathbf{a}_n = \mathbf{a}_{n-1} + \boldsymbol{\xi}_n (r[n] - \mathbf{a}_{n-1}^* \overline{\mathbf{x}}_n)^*;$

6:
$$\mathbf{P}_n = \frac{1}{\lambda} (\mathbf{P}_{n-1} - \boldsymbol{\xi}_n \overline{\mathbf{x}}_n^* \mathbf{P}_{n-1}).$$

QPSK Relay SDR (9)

• AD9361 Transmitter

	Block Parameters: AD936x Transmitter	×				
	AD936x Transmitter					
	Transmit data using an AD936x.					
	Main Filter Advanced					
	Radio IP address: 192.168.3.3					
	Info					
	Radio Properties					
data AD936x	Source of center frequency: Dialog	~				
[4096x1] Transmitter	Center frequency (Hz): 5e9	5e+09				
AD936x Transmitter	Source of gain: Dialog	~				
	Gain (dB): -10	:				
	Channel mapping: 2	:				
	Baseband sample rate (Hz): 520841	:				
	Data					
	Enable output port for underflow indicator					
	OK Cancel Help	Apply				

QPSK Receiver SDR (1)

• QPSK Receiver simulink model (HDX)

QPSK Receiver Using Analog Devices AD9361/AD9364

Note: Before running the QPSK models, first run the companion models for frequency offset calibration.

Open the companion zynqRadioFrequencyCalibrationTxAD9361AD9364SLmodel

Open the companion zynqRadioFrequencyCalibrationRxAD9361AD9364SL model

Parameters

Open the companion zynqRadioQPSKTxAD9361AD9364SL model

QPSK Receiver SDR (2)

• QPSK Receiver simulink model (HDX)

		🚡 Block Parameters: AD936x Rec	×	
		-AD936x Receiver		
		Receive data from an AD936x.		
		Main Filter Advanced Radio Connection	\frown	
		Radio IP address:	192.168.3.4	
		Radio Properties		
		Source of center frequency:	Dialog	~
	data [4096x1	Center frequency (Hz):	5e9-15500	5e+09
40026	data valid	Source of gain:	AGC Slow Attack	~
Receiver		Channel mapping:	1	:
	overflow	Baseband sample rate (Hz):	sdrqpskrx.Fs	520841
AD936x Receive	er	Data		
AB000X Receive	21	Output data type:	double	~
		Samples per frame:	4096	
		Enable output port for overflow	indicator	
		Enable burst mode		
			OK Cancel	Help Apply

QPSK Receiver SDR (3)

• QPSK Receiver simulink model (HDX)

IB FDX QPSK OTA Test (1)

- Execute Tx SDR, Relay SDR and Rx SDR simultaneously.
 - using 'sim' mode to display the message in the command window
 - in simulink: Debug > Diagnostics > Diagnostic Viewer

IB FDX QPSK OTA Test (2)

• OTA results appeared at Tx SDR

	🊡 Diagnostic Viewer					
	Diagnostics					
1			- 42	9, search	6 €	
7		364SL	0			
	Hello world 094					
	Hello world 095					
	Hello world 096					
	Hello world 097					
	Hello world 098					
	Hello world 099					
	Hello world 000					
	Hello world 001					
	Hello world 002					
	Hello world 003					
	Hello world 004					
	Hello world 005					
	Hello world 006					
	Hello world 007					
	Hello world 008					
	Hello world 009					
	Hello world 010					
	Hello world 011					
	Hello world 012					
	Hello world 013					
	Hello world 014					
	Hello world 015					
	Hello world 016					
	Hello world 01/					
	Hello World 018					
	Hello Mould 010					
	Hello world 020					
	Relio World 021					

IB FDX QPSK OTA Test (3)

• OTA results appeared at Relay SDR

IB FDX QPSK OTA Test (4)

🎦 Rx_SDR2 * - :	Simulink academic use				– o ×
SIMULATION	DEBUG	Modeling Format	APPS	SUBSYSTEM BLOCK	· 🔍 🖳 - 🕐 - 💿
Performance Advisor - PERFORMANCE	Diagnostics	Trace Signal Image: Amplitude Image: Amplitude	Pause Time (sec) Add Breakpoint Breakpoints List BREAKPOINTS	V Stop Time inf Update Accelerator Step Model * Fast Restart Back * Forward SIMULATE	-
	Rx_SDR2			Timing	g Legend \odot ×
🕒 🎦 Rx_SD	DR2 🕨			Highli	ight None 🗸 灯
			Note: Before	xe running the QPSK models, first run the companion models for frequency offset calibration. Open the companion zynqRadioFrequencyCalibrationTxAD9361AD9364SL model Open the companion zynqRadioPSKTxAD9361AD9364SL model Open the companion zynqRadioQPSKTxAD9361AD9364SL model Open the companion zynqRadioPSKTXAD9361AD9364SL model Open the companion zynqRadioPSKTXAD9361AD9364SL model Open the companion zynqRadioPSKTXAD9361AD9364SL model Open the companion zynqRadioPSKTXAD9	rete Period 3.8399e-06 7.8642e-03 r Constant Triggered, Source: D1 Multirate
Diagnostic Viewe	24 ·			01:44 PM· Simulation - 90 A 0 0 :	
ZEVQ5T-5-" KTU] (j 55-"k(ZjN' ello world ello world ello world Hello world Hello world Hello world Hello world Hello world BRXPVE	k(Zj ;@. 070 071 3NP- d 014 d 015 d 016 d 017 d 018				
Paused				View diagnostics 80% T=42.164* Paused	FixedStepDiscrete

IB FDX QPSK OTA Test (5)

• Without SIC

• Diagnostic Viewer @ Relay-SDR

*li&fIYR6
M3\$li&fIYR6
M3\$li&fIYR6
MM3\$li&fIYR6
MM3\$li&fIYR6
MM3\$licm3 :1
hello world 085
Hello world 086
Hello wo_saE(1
~}C_0w1{>aoX
V}C 0wl{>aoX

IB FDX QPSK OTA Test (6)

• With SIC

• Diagnostic Viewer @ Relay-SDR

Zmt[=o%[i6z-^K v"+F%mdEu Xello world 051 Hello world 052 Hello world 053 Hello world 054 Hello world 055 Hello world 056 Hello world 057

IB FDX QPSK OTA Test (7)

```
function y GSD = selfcorr(x n, r1 n)
     1
۲
     2
                  if isempty(x_n)
     3
                      x n = 0;
     4
                  end
     5
                  N = 200;
                  La = 5;
     6
     7
                  mu = 0.01;
     8
                  a GSD = complex(zeros(La, 1));
     9
                  y_GSD = zeros(N, 1);
                  for index = 1:N
    10
                      if index < La</pre>
    11
                          y GSD(index) = r1 n(index);
    12
    13
                      else
    14
                           disp('a_GSD:');
    15
                           disp(a GSD);
                          y_GSD(index) = r1_n(index)-a_GSD' * x_n(index:-1:index-La+1);
    16
                           a_GSD = a_GSD + mu*conj(y_GSD(index))*x_n(index:-1:index-La+1);
    17
    18
                      end
    19
                  end
    20
              end
>>
```

iagnostic Viewer

0.0103 + 0.1122i 0.0098 + 0.1084i 0.0058 + 0.1060i a_GSD: 0.0133 + 0.1091i 0.0129 + 0.1099i 0.0139 + 0.1118i 0.0134 + 0.1080i 0.0094 + 0.1056i